122 research outputs found

    Morphometrics of Southern Ocean diatoms using high throughput imaging and semi-automated image analysis

    Get PDF
    Since the ADIAC project, which ended more than 15 years ago, not much progress in automating morphometric analysis of diatoms from slide-mounted material has been published, and no ready-to-use system has become available. This thesis work is the first to implement such a system completely, covering all aspects of the underlying imaging and image processing pipeline, by combining a commercially available slide scanning microscope with my diatom morphometry software SHERPA. I was able to show the applicability as well as the potential of this approach by executing a series of smaller and two large-scale morphometry projects. The extensive sampling sizes, which were made possible only by the new workflow, enabled the first observations of life cycle related size distribution changes of Fragilariopsis kerguelensis in its natural habitat, leading to hypotheses on influences of reproduction, grazing and environmental changes in one of the most important diatom species of the Southern Ocean. In a second large-scale investigation, SHERPA's precise morphometric measurements revealed a second F. kerguelensis morphotype, which has not been recognized before, even though the species, as well as the very material I analyzed, have been investigated intensely before by experienced diatomists; a result not disqualifying their work, but rather underlining that explicit and precise quantification of morphological information has a strong potential to generate novel scientific insights. This new morphotype has implications on the utilization of paleo-proxies which are based on geometrical valve features of F. kerguelensis. Differentiating both morphotypes might improve established methods and possibly provides a new proxy for summer sea surface temperature

    Large-Scale Permanent Slide Imaging and Image Analysis for Diatom Morphometrics

    Get PDF
    Light microscopy analysis of diatom frustules is widely used in basic and applied research, notably taxonomy, morphometrics, water quality monitoring and paleo-environmental studies. Although there is a need for automation in these applications, various developments in image processing and analysis methodology supporting these tasks have not become widespread in diatom-based analyses. We have addressed this issue by combining our automated diatom image analysis software SHERPA with a commercial slide-scanning microscope. The resulting workflow enables mass-analyses of a broad range of morphometric features from individual frustules mounted on permanent slides. Extensive automation and internal quality control of the results helps to minimize user intervention, but care was taken to allow the user to stay in control of the most critical steps (exact segmentation of valve outlines and selection of objects of interest) using interactive functions for reviewing and revising results. In this contribution, we describe our workflow and give an overview of factors critical for success, ranging from preparation and mounting through slide scanning and autofocus finding to final morphometric data extraction. To demonstrate the usability of our methods we finally provide an example application by analysing Fragilariopsis kerguelensis valves originating from a sediment core, which substantially extends the size range reported in the literature

    A practical fpt algorithm for Flow Decomposition and transcript assembly

    Full text link
    The Flow Decomposition problem, which asks for the smallest set of weighted paths that "covers" a flow on a DAG, has recently been used as an important computational step in transcript assembly. We prove the problem is in FPT when parameterized by the number of paths by giving a practical linear fpt algorithm. Further, we implement and engineer a Flow Decomposition solver based on this algorithm, and evaluate its performance on RNA-sequence data. Crucially, our solver finds exact solutions while achieving runtimes competitive with a state-of-the-art heuristic. Finally, we contextualize our design choices with two hardness results related to preprocessing and weight recovery. Specifically, kk-Flow Decomposition does not admit polynomial kernels under standard complexity assumptions, and the related problem of assigning (known) weights to a given set of paths is NP-hard.Comment: Introduces software package Toboggan: Version 1.0. http://dx.doi.org/10.5281/zenodo.82163

    Deep learning-based diatom taxonomy on virtual slides

    Get PDF
    Kloster M, Langenkämper D, Zurowietz M, Beszteri B, Nattkemper TW. Deep learning-based diatom taxonomy on virtual slides. Scientific Reports. 2020;10(1): 14416

    Temporal changes in size distributions of the Southern Ocean diatom Fragilariopsis kerguelensis through high-throughput microscopy of sediment trap samples

    Get PDF
    Some aspects of the life cycle of the Southern Ocean diatom Fragilariopsis kerguelensis have been investigated previously, but many of its details have not been surveyed in nature. We investigated material from a two-year sediment trap time series by high-throughput imaging and image analysis, looking for morphometric signals of life cycle stages. Valve length distributions appeared close to unimodal but positively (right-) skewed. Size cohorts resulting from synchronized sexual reproduction events were not clearly distinguishable. Nevertheless, based on changes in valve length distributions, we found three general seasonal phases. These corresponded to periods of proliferation (with higher proportions of smaller cells during late spring/early summer), cessation of growth (relative loss of smaller cells during late summer/early autumn), and overwintering (little change in size distributions, with an increased proportion of large cells). We discuss possible causes of these signals, and their relevance to growth, sexual activity and adaption to environmental conditions, such as grazing pressures and the need for an overwintering strategy.This work was supported by the Deutsche Forschungsgemeinschaft (DFG) in the framework of the priority programme 1158 ‘Antarctic Research with comparative investigations in Arctic ice areas’ under grant nr. BE4316/4-1, KA1655/3-1; and by an outgoing scholarship, as well as travel expenses, granted by the Helmholtz Graduate School for Polar and Marine Research (POLMAR). Part of this work was supported by the Australian Government’s Australian Antarctic Science Grant Program under project number 4078, and Macquarie University (A. RigualHernández and L. Armand)

    Epiphytic diatom community structure and richness is determined by macroalgal host and location in the South Shetland Islands (Antarctica)

    Get PDF
    The marine waters around the South Shetland Islands are paramount in the primary production of this Antarctic ecosystem. With the increasing effects of climate change and the annual retreat of the ice shelf, the importance of macroalgae and their diatom epiphytes in primary production also increases. The relationships and interactions between these organisms have scarcely been studied in Antarctica, and even less in the volcanic ecosystem of Deception Island, which can be seen as a natural proxy of climate change in Antarctica because of its vulcanism, and the open marine system of Livingston Island. In this study we investigated the composition of the diatom communities in the context of their macroalgal hosts and different environmental factors. We used a non-acidic method for diatom digestion, followed by slidescanning and diatom identification by manual annotation through a web-browser-based image annotation platform. Epiphytic diatom species richness was higher on Deception Island as a whole, whereas individual macroalgal specimens harboured richer diatom assemblages on Livingston Island. We hypothesize this a possible result of a higher diversity of ecological niches in the unique volcanic environment of Deception Island. Overall, our study revealed higher species richness and diversity than previous studies of macroalgae-inhabiting diatoms in Antarctica, which could however be the result of the different preparation methodologies used in the different studies, rather than an indication of a higher species richness on Deception Island and Livingston Island than other Antarctic localities
    • …
    corecore